The current applications of agents are of a rather experimental and ad hoc nature. Besides universities and research centres a considerable number of companies, like IBM and Microsoft, are doing research in the area of agents. To make sure their research projects will receive further financing, many researchers & developers of such companies (but this is also applicable on other parties, even non-commercial ones) are nowadays focusing on rather basic agent applications, as these lead to demonstrable results within a definite time.
Examples of this kind of agent applications are:
Agents who partially or fully handle someone's e-mail;
Agents who filter and/or search through (Usenet) news articles looking for information that may be interesting for a user;
Agents that make arrangements for gatherings such as a meeting, for instance by means of lists provided by the persons attending or based on the information (appointments) in the electronic agenda of every single participant.

The current trend in agent developments is to develop modest, low-level applications. Yet, more advanced and complicated applications are more and more being developed as well.
At this moment research is being done into separate agents, such as mail agents, news agents and search agents. These are the first step towards more integrated applications, where these single, basic agents are used as the building blocks. Expectations are that this will become the trend in the next two or three years to come. (Note that this does not mean that there will be no or little interesting developments and opportunities in the area of smaller, more low-level agent applications.)
In chapter four a model will be presented which supports this trend towards more complex, integrated systems. In this model basic agents can easily be combined to create complex structures which are able to perform high-level tasks for users, suppliers and intermediaries. The interface to this system (i.e. model) is through a single agent which delegates sub-tasks and queries to other agents.

In [IBM95] eight application areas are identified where now (or in the near-future) agent technology is (or will be) used.
These areas are:
1. Systems and Network Management:
Systems and network management is one of the earliest application areas to be enhanced using intelligent agent technology. The movement to client/server computing has intensified the complexity of systems being managed, especially in the area of LANs, and as network centric computing becomes more prevalent, this complexity further escalates. Users in this area (primarily operators and system administrators) need greatly simplified management, in the face of rising complexity.
Agent architectures have existed in the systems and network management area for some time, but these agents are generally "fixed function" rather than intelligent agents. However, intelligent agents can be used to enhance systems management software. For example, they can help filter and take automatic actions at a higher level of abstraction, and can even be used to detect and react to patterns in system behaviour. Further, they can be used to manage large configurations dynamically;
2. Mobile Access / Management:
As computing becomes more pervasive and network centric computing shifts the focus from the desktop to the network, users want to be more mobile. Not only do they want to access network resources from any location, they want to access those resources despite bandwidth limitations [1] of mobile technology such as wireless communication, and despite network volatility.
Intelligent agents which (in this case) reside in the network rather than on the users' personal computers, can address these needs by persistently carrying out user requests despite network disturbances. In addition, agents can process data at its source and ship only compressed answers to the user, rather than overwhelming the network with large amounts of unprocessed data;
3. Mail and Messaging:
Messaging software (such a software for e-mail) has existed for some time, and is also an area where intelligent agent function is currently being used. Users today want the ability to automatically prioritise and organise their e-mail, and in the future, they would like to do even more automatically, such as addressing mail by organisational function rather than by person.
Intelligent agents can facilitate all these functions by allowing mail handling rules to be specified ahead of time, and letting intelligent agents operate on behalf of the user according to those rules. Usually it is also possible (or at least it will be) to have agents deduce these rules by observing a user's behaviour and trying to find patterns in it;
4. Information Access and Management:
Information access and management is an area of great activity, given the rise in popularity of the Internet and the explosion of data available to users. It is the application area that this thesis will mainly focus on.
Here, intelligent agents are helping users not only with search and filtering, but also with categorisation, prioritisation, selective dissemination, annotation, and (collaborative) sharing of information and documents;
5. Collaboration:
Collaboration is a fast-growing area in which users work together on shared documents, using personal video-conferencing, or sharing additional resources through the network. One common denominator is shared resources; another is teamwork. Both of these are driven and supported by the move to network centric computing.
Not only do users in this area need an infrastructure that will allow robust, scaleable sharing of data and computing resources, they also need other functions to help them actually build and manage collaborative teams of people, and manage their work products. One of the most popular and most heard-of examples of such an application is the groupware packet called Lotus Notes;
6. Workflow and Administrative Management:  [2]
Administrative management includes both workflow management and areas such as computer/telephony integration, where processes are defined and then automated. In these areas, users need not only to make processes more efficient, but also to reduce the cost of human agents. Much as in the messaging area, intelligent agents can be used to ascertain, then automate user wishes or business processes;
7. Electronic Commerce:
Electronic commerce is a growing area fuelled by the popularity of the Internet. Buyers need to find sellers of products and services, they need to find product information (including technical specifications, viable configurations, etc.) that solve their problem, and they need to obtain expert advice both prior to the purchase and for service and support afterward. Sellers need to find buyers and they need to provide expert advice about their product or service as well as customer service and support. Both buyers and sellers need to automate handling of their "electronic financial affairs".
Intelligent agents can assist in electronic commerce in a number of ways. Agents can "go shopping" for a user, taking specifications and returning with recommendations of purchases which meet those specifications. They can act as "salespeople" for sellers by providing product or service sales advice, and they can help troubleshoot customer problems;
8. Adaptive User Interfaces:
Although the user interface was transformed by the advent of graphical user interfaces (GUIs), for many, computers remain difficult to learn and use. As capabilities and applications of computers improve, the user interface needs to accommodate the increase in complexity. As user populations grow and diversify, computer interfaces need to learn user habits and preferences and adapt to individuals.
Intelligent agents (called interface agents [3]) can help with both these problems. Intelligent agent technology allows systems to monitor the user's actions, develop models of user abilities, and automatically help out when problems arise. When combined with speech technology, intelligent agents enable computer interfaces to become more human or more "social" when interacting with human users.

[1] Bandwidth is - in technical terms - the measure of information-carrying capability of a communication medium (such as optical fibre). An Internet service such as the World Wide Web, which makes use of graphical (and sometimes even audio or video) data, needs considerable amounts of bandwidth, whereas an Internet service such as e-mail needs only very small amounts.
[2] A workflow is a system whose elements are activities, related to one another by a trigger relation and triggered by external events, which represents a business process starting with a commitment and ending with the termination of that commitment.
Workflow Management (WFM) is the computer assisted management of business processes through the execution of software whose order of execution is controlled by a computerised representation of the business processes.

[3] For more information about such agents, see this article on Autonomous Interface Agents.

 previous page  next page  to the chapter's TOC  to the main TOC

"Intelligent Software Agents on the Internet" - by Björn Hermans